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We consider the dynamics of a harmonic crystal in d dimensions with n com-
ponents, d, n \ 1. The initial date is a random function with finite mean density
of the energy which also satisfies a Rosenblatt- or Ibragimov–Linnik-type
mixing condition. The random function is translation-invariant in x1,..., xd − 1

and converges to different translation-invariant processes as xd Q± ., with the
distributions m±. We study the distribution mt of the solution at time t ¥ R. The
main result is the convergence of mt to a Gaussian translation-invariant measure
as t Q .. The proof is based on the long time asymptotics of the Green function
and on Bernstein’s ‘‘room-corridor’’ argument. The application to the case of
the Gibbs measures m±=g± with two different temperatures T± is given. Limit-
ing mean energy current density is − (0,..., 0, C(T+ − T− )) with some positive
constant C > 0 what corresponds to Second Law.

KEY WORDS: Harmonic crystal; random initial data; mixing condition;
Gaussian measures; covariance matrices; characteristic functional.

1. INTRODUCTION

The paper concerns the problems of the convergence to equilibrium distri-
bution and the heat conduction for harmonic crystals. We have started in
refs. 7–10 the analysis of the long time convergence to the equilibrium dis-
tribution for partial differential equations of hyperbolic type in Rd and for
the harmonic crystals. Here we continue the analysis and prove Second
Law for the crystals: the energy current is directed from the hot tempera-
ture to the cold one.



For one-dimensional chains of harmonic oscillators (with d=1)
similar results have been established in refs. 1, 27, and in refs. 2, 11, 12, 14,
15, 16, 23 for one-dimensional chains of anharmonic oscillators coupled to
heat baths. We extend the results for harmonic crystals to all d \ 1. The
case d > 1 appears very different from d=1 because of more complicated
properties of oscillatory integrals. We combine here the methods from
ref. 1 with new ideas. Namely, we develop our ‘‘cutoff ’’ strategy from
ref. 10 which more carefully exploits the mixing condition in Fourier space.
This approach allows us to cover all d \ 1.

We assume that the initial state Y0(x) of the crystal is a random
element of the Hilbert space Ha of real sequences, see Definition 2.1 later.
The distribution of Y0(x) is a probability measure m0 of mean zero satis-
fying conditions S1–S3 later. In particular, the distribution of Y0(x) con-
verges to distinct translation-invariant measures m± as xd Q± .. Given
t ¥ R, denote by mt the probability measure that gives the distribution of
the solution Y(x, t) to dynamical equations with the random initial state Y0.
We study the asymptotics of mt as t Q± ..

Our main result gives the (weak) convergence of the measures mt on
the Hilbert space Ha with a < − d/2 to a limit measure m.

mt F m., t Q ., (1.1)

which is a translation-invariant Gaussian measure on Ha. A similar con-
vergence result holds for t Q− . since our system is time-reversible. We
construct generic examples of harmonic crystals and random initial data
satisfying all assumptions imposed. The explicit formulas for the covari-
ance of the measure m. are given in (2.15)–(2.24). We derive the expression
for the limit mean energy current j.. The ergodicity and mixing of the limit
measures m. follow by the same arguments as in ref. 10.

We apply our results to a particular case when m±=g± are Gibbs
measures with two distinct temperatures T± \ 0 (we adjust the definition
of the Gibbs measures g± in Section 4). The measures g± satisfy all our
assumptions, and the weak convergence gt F g. follows from our results.
We apply formula for the limit energy current j. — (j 1

.,..., j d
.) to the case

of Gibbs measures g± and deduce that

j.=−(0,..., 0, C(T+ − T− )), C > 0.

This corresponds to Second Law.
For d=1 similar problem in different framework have been analyzed

in refs. 20 and 24. The authors follow another strategy for the construction
of equilibrium measure. Namely, the finite simple lattice of length L with
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the viscosity is considered in contact with two heat baths at temperatures T±.
The convergence of the covariance is proved in the limits first t Q ., and
then L Q .. The result is close to ours: the limit energy current is non-
zero and ’ DT which corresponds to the superconductivity.(2) However,
the space decay of the limit position-momentum covariance in ref. 20 is
exponential which differs from the power decay in our problem (see
Remark 4.2(iii)). Therefore, the equilibrium measures are distinct.

For d \ 1 the convergence (1.1) has been obtained for the first time in
ref. 19 for initial measures which are absolutely continuous with respect to
the canonical Gaussian measure. We cover more general class of initial
measures with the mixing condition and do not assume the absolute con-
tinuity. For the first time the mixing condition has been introduced by
R. Dobrushin and Yu. Suhov for the ideal gas. (4) The condition substitutes
(quasi-) ergodic hypothesis in the proof of the convergence to the equilib-
rium distribution, and plays the key role in our Bernstein-type approach.
Developing this approach, we have proved the convergence for the
wave and Klein–Gordon equations with translation-invariant initial mea-
sures. (7, 8, 18) In ref. 9 we have extended the results to the wave equation with
the two-temperature initial measures. The present paper develops our pre-
vious results, (10) where the harmonic crystal has been considered for all
d \ 1 in the case of translation invariant initial measures. Here we extend
the results to the two-temperature initial measures.

We outline our main result and strategy of proof. Consider a discrete
subgroup C of Rd, which is isomorphic to Zd. We may assume C=Zd after
a suitable change of coordinates. A lattice in Rd is the set of the points of
the form r̄l(x)=x+tl, where x ¥ Zd, tl ¥ Rd, l=1,..., L. The points of the
lattice represent the equilibrium positions of the atoms (molecules, ions,...)
of the crystal. Denote by rl(x, t) the positions of the atoms in the dynam-
ics. Then the dynamics of the displacements rl(x, t) − r̄l(x) is governed by
the equations of type

˛ ü(x, t)=−;y ¥ Z d V(x − y) u(y, t), x ¥ Zd,

u|t=0=u0(x), u̇|t=0=v0(x).
(1.2)

Here u(x, t)=(u1(x, t),..., un(x, t)), u0=(u01,..., u0n), v0=(v01,..., v0n) ¥ Rn,
n=Ld; V(x) is the real interaction (or force) matrix, (Vkl(x)), k, l=1,..., n.
Similar equations were considered in refs. 1, 10, 19, and 27. Below we con-
sider the system of type (1.2) with an arbitrary n=1, 2,... .

Denote Y(t)=(Y0(t), Y1(t)) — (u( · , t), u̇( · , t)), Y0=(Y0
0, Y1

0) — (u0( · ),
v0( · )). Then (1.2) takes the form of an evolution equation

Ẏ(t)=AY(t), t ¥ R; Y(0)=Y0. (1.3)
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Formally, this is the Hamiltonian system since

AY=J RV 0
0 1

S Y=J NH(Y), J=R 0 1
− 1 0

S . (1.4)

Here V is a convolution operator with the matrix kernel V and H is the
Hamiltonian functional

H(Y) :=1
2 Ov, vP+1

2 OVu, uP, Y=(u, v), (1.5)

where the kinetic energy is given by 1
2 Ov, vP=1

2 ;x ¥ Z d |v(x)|2 and the
potential energy by 1

2 OVu, uP=1
2 ;x, y ¥ Z d (V(x − y) u(y), u(x)), ( · , · )

stands for the real scalar product in the Euclidean space Rn.
We assume that the initial correlation functions

Q ij
0 (x, y) :=E(Y i

0(x) é Y j
0(y)), x, y ¥ Zd, (1.6)

have the form

Q ij
0 (x, y)=q ij

0 (x̄ − ȳ, xd, yd), i, j=0, 1. (1.7)

Here x=(x1,..., xd) — (x̄, xd), y=(y1,..., yd) — (ȳ, yd) ¥ Zd. Moreover, we
assume that

lim
yd Q± .

q ij
0 (z̄, yd+zd, yd)=q ij

±(z), z=(z̄, zd) ¥ Zd. (1.8)

Here q ij
±(z) are the correlation functions of some translation-invariant

measures m± with zero mean value in Ha. The measure m0 is not translation-
invariant if q ij

− ] q ij
+.

Next, we assume that the initial mean ‘‘energy’’ density is uniformly
bounded:

e0(x) :=E[|u0(x)|2+|v0(x)|2]

=tr Q00
0 (x, x)+tr Q11

0 (x, x) [ e0 < ., x ¥ Zd. (1.9)

Finally, it is assumed that the measure m0 satisfies a mixing condition of a
Rosenblatt- or Ibragimov–Linnik-type, which means that

Y0(x) and Y0(y) are asymptotically independent as |x − y| Q .. (1.10)

To prove the convergence (1.1) we follow the strategy of refs. 7–10. There
are three steps:
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(I) The family of measures mt, t \ 0, is weakly compact in Ha,
a < − d/2.

(II) The correlation functions converge to a limit,

Q ij
t (x, y) — F (Y i(x) é Y j(y)) mt(dY) Q Q ij

.(x, y), t Q .. (1.11)

(III) The characteristic functionals converge to a Gaussian one,

m̂t(Y) :=F e iOY, YPmt(dY) Q exp{− 1
2 Q.(Y, Y)}, t Q .. (1.12)

Here Y=(Y0, Y1) ¥ D :=D À D, D :=C0(Zd) é Rn, where C0(Zd) denotes
a space of real sequences with finite support, OY, YP=;i=0, 1 ;x ¥ Z d

(Y i(x), Y i(x)), and Q. is the quadratic form with the matrix kernel
(Q ij

.(x, y))i, j=0, 1,

Q.(Y, Y)= C
i, j=0, 1

C
x, y ¥ Z d

(Q ij
.(x, y), Y i(x) é Y j(y)). (1.13)

Below the brackets O · , ·P denote also the Hermitian scalar product in the
Hilbert spaces L2(Td) é Rn or its different extensions.

For the proof of (I)–(III) we develop our cutting strategy from ref. 10
combined with some techniques from ref. 1. To prove (II) we split
Q ij

t (x, y) into even, odd components and the remainder as in ref. 1. The
even component corresponds to the translation-invariant initial measure
and is analyzed by the method of ref. 10 for all d \ 1. On the other hand,
the odd component is missing in ref. 10 and it requires a novel idea since its
Fourier transform contains the Cauchy Principal Value which is more sin-
gular than measures corresponding to the even component. The singularity
was studied in ref. 1 for the case d=1. However, similar detailed analysis
for d > 1 seems to be impossible due to the bifurcations of the critical
points.

Let us outline our method. We rewrite (1.11) in the equivalent form

Qt(Y, Y) Q Q.(Y, Y), t Q ., (1.14)

for Y ¥ D0: by definition of D0, the Fourier transform Ŷ(h) vanishes in a
neighborhood of a ‘‘critical set’’ C … Td. The set C includes all points
h ¥ Td with a degenerate Hessian of wk(h), where w2

k(h) are the eigenvalues
of the matrix V̂(h)=;z ¥ Z d e izhV(z). Also the set C includes the points
h ¥ Td either with wk(h)=0, or Nhd

wk(h)=0 or with non-smooth wk(h).
The cutting of the critical set C is possible by two key observations:
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(i) mes C=0 and (ii) the correlation quadratic form is continuous in l2 due
to the mixing condition. The continuity follows from the space decay of
correlation functions by well-known Shur’s lemma. The systematic appli-
cation of the Shur lemma allows us to extend (1.14) from Y ¥ D0 to all
Y ¥ D by condition E6.

Similarly, we first prove the property (III) for Y ¥ D0 and then extend
it to all Y ¥ D. For Y ¥ D0 we use a variant of the S. N. Bernstein ‘‘room-
corridor’’ technique (cf. ref. 1 for d=1). We develop our variant of the
S. N. Bernstein technique which we have introduced in refs. 7–9, 18 in
the context of the Klein–Gordon and wave equations and in ref. 10 for the
harmonic crystal with d \ 1 in the case of translation-invariant initial
measures. For Y ¥ D0 we have m̂t(Y)=E exp(iOY(t), YP). We rewrite,
OY(t), YP=OY(0), F( · , t)P, where F(x, t) and be represented as an
oscillatory integral. For F(x, t) we get the uniform bounds (9.6), (9.7).
These bounds follow by the stationary phase method because F(x, 0)=
Y(x) ¥ D0, and hence, Ŷ(h) vanishes in all points h ¥ C with degenerate
Hessian of the phase function. The bounds roughly speaking imply the
following representation:

OY( · , t), YP ’
;y ¥ Bt

Y0(y)

`|Bt |
, t Q ., (1.15)

where Bt stands for the ball {y ¥ Zd : |y| [ ct} and |Bt | is its volume. Now
(1.12) follows from (1.15) by the Lindeberg Central Limit Theorem since
Y0(y1), Y0(y2) are almost independent for large |y1 − y2 | by mixing condi-
tion (1.10).

Let us comment on our conditions concerning the interaction matrix
V(x). We assume conditions E1–E4 later which in a similar form appear
also in refs. 1, 19, and 26. E1 means the exponential space-decay of the
interaction in the crystal. E2 resp. E3 means that the potential energy is
real resp. nonnegative. We need condition E4 to apply the stationary phase
method to the oscillatory integral representation for the covariance. It
provides that the stationary points of the phase function are nondegenerate
and ensures that mes C=0. We also introduce a new simple condition E5
for the case n > 1 which provides the convergence of the covariance Qt. It
can be considerably weakened to condition E5Œ from Remark 2.9(iii). For
example, condition E5Œ holds for the canonical Gaussian measures which
are considered in ref. 19. Conditions E4 and E5 hold for almost all func-
tions V(x) satisfying E1–E3 as shown in ref. 10. Furthermore, we do not
require that wk(h) ] 0: for instance, wk(0)=0 for the elastic lattice (3.2) in
the case mk=0. Instead we require that mes{h ¥ Td : wk(h)=0}=0 and
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impose condition E6 which is similar to condition (iii) from ref. 19, p. 171.
E6 holds for the elastic lattice (3.2) if either d \ 3 or mk > 0.

The main result of the paper is stated in Section 2 (see Theorem A). In
Section 3 we give examples of Eq. (1.2) and measures m0 which satisfy all
our conditions E1–E6 and S0–S3, respectively. Section 4 concerns the
application to Gibbs measures. In Section 5 we give bounds for the initial
covariance. The compactness (Property I) is established in Section 6, con-
vergence (1.11) in Sections 7 and 8, and convergence (1.12) in Section 9. In
Section 10 we check the Lindeberg condition for convergence to a Gaussian
limit. Appendix A is concerned with a dynamics and covariance in Fourier
space.

2. MAIN RESULTS

Let us describe our results more precisely.

2.1. Dynamics

We assume that the initial date Y0 belongs to the phase space Ha,
a ¥ R1, defined below.

Definition 2.1. Ha is the Hilbert space of pairs Y — (u(x), v(x)) of
Rn-valued functions of x ¥ Zd endowed with the norm

||Y||2
a — C

x ¥ Z d
(|u(x)|2+|v(x)|2)(1+|x|2)a < .. (2.1)

We impose the following conditions E1–E6 on the matrix V.

E1. There exist constants C, a > 0 such that |Vkl(z)| [ Ce−a |z|, k, l ¥

n̄ :={1,..., n}, z ¥ Zd.

Let us denote by V̂(h) :=(V̂kl(h))k, l ¥ n̄, where V̂kl(h) — ;z ¥ Z d Vkl(z) e izh,
h ¥ Td, and Td denotes the d-torus Rd/2pZd.

E2. V is real and symmetric, i.e., Vlk(−z)=Vkl(z) ¥ R, k, l ¥ n̄, z ¥ Zd.

The condition implies that V̂(h) is a real-analytic Hermitian matrix-
function in h ¥ Td.

E3. The matrix V̂(h) is non-negative definite for each h ¥ Td.
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The condition means that the Eq. (1.2) is hyperbolic like wave and
Klein–Gordon equations considered in refs. 7 and 8. Let us define the
Hermitian non-negative definite matrix

W(h) :=(V̂(h))1/2 \ 0 (2.2)

with the eigenvalues wk(h) \ 0, k ¥ n̄, which are called dispersion relations.
For each h ¥ Td the Hermitian matrix W(h) has the diagonal form in the
basis of the orthogonal eigenvectors {ek(h): k ¥ n̄}:

W(h)=B(h) Rw1(h) · · · 0
0 z 0
0 · · · wn(h)

S Bg(h), (2.3)

where B(h) is a unitary matrix and Bg(h) denotes its adjoint. It is well
known that the functions wk(h) and B(h) are real-analytic outside the set
of the ‘‘crossing’’ points hg: wk(hg)=wl(hg) for some l ] k. However,
generally the functions are not smooth at the crossing points if wk(h) –

wl(h). Therefore, we need the following lemma which is proved in the
Appendix of ref. 10.

Lemma 2.2. Let conditions E1 and E2 hold. Then there exists a
closed subset Cg … Td such that (i) the Lebesgue measure of Cg is zero:

mes Cg=0. (2.4)

(ii) For any point G ¥ Td 0Cg there exists a neighborhood O(G) such
that each dispersion relation wk(h) and the matrix B(h) can be chosen as
the real-analytic functions in O(G).

(iii) The eigenvalues wk(h) have constant multiplicity in Td 0Cg, i.e.,
it is possible to enumerate them so that we have for h ¥ Td 0Cg:

w1(h) — · · · — wr1
(h), wr1+1(h) — · · · — wr2

(h),..., wrs+1(h) — · · · — wn(h),
(2.5)

wrs
(h) – wrn

(h) if s ] n, 1 [ rs, rn [ rs+1 :=n. (2.6)

(iv) The spectral decomposition holds,

W(h)= C
s+1

s=1
wrs

(h) Ps(h), h ¥ Td 0Cg, (2.7)
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where Ps(h) is the orthogonal projection in Rn which is real-analytic func-
tion of h ¥ Td 0Cg.

Below we suggest that wk(h) denote the local real-analytic functions
from Lemma 2.2(ii). Our next condition is the following:

E4. Dk(h) – 0, -k ¥ n̄, where Dk(h) :=det( “
2
wk(h)

“h i “hj
)d

i, j=1, h ¥ Td 0Cg.

Let us denote C0 :={h ¥ Td : det V̂(h)=0} and Ck :={h ¥ Td 0Cg :
Dk(h)=0}, k=1,..., n. The following lemma has also been proved in the
Appendix of ref. 10.

Lemma 2.3. Let conditions E1–E4 hold. Then mes Ck=0, k=0,
1,..., n.

Our last conditions on V are the following:

E5. For each k ] l the identity wk(h) − wl(h) — const− , h ¥ Td does
not hold with const− ] 0, and the identity wk(h)+wl(h) — const+ does not
hold with const+ ] 0.

E6. ||V̂−1(h)|| ¥ L1(Td) in the case when C0 ] ”.

This condition holds if C0=”.
The following Proposition 2.4 is proved in ref. 19, p. 150 and ref. 1,

p. 128 (see also Appendix A).

Proposition 2.4. Let E1 and E2 hold, and a ¥ R. Then

(i) for any Y0 ¥ Ha there exists a unique solution Y(t) ¥ C(R, Ha) to
the Cauchy problem (1.3).

(ii) The operator U(t): Y0 W Y(t) is continuous in Ha.

2.2. Convergence to Statistical Equilibrium

Let (W, S, P) be a probability space with expectation E and B(Ha)
denote the Borel s-algebra in Ha. We assume that Y0=Y0(w, · ) in (1.3) is a
measurable random function with values in (Ha, B(Ha)). In other words,
for each x ¥ Zd the map w W Y0(w, x) is a measurable map W Q R2n with
respect to the (completed) s-algebras S and B(R2n). Then Y(t)=U(t) Y0 is
again a measurable random function with values in (Ha, B(Ha)) owing to
Proposition 2.4. We denote by m0(dY0) a Borel probability measure on Ha

giving the distribution of the Y0. Without loss of generality, we assume
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(W, S, P)=(Ha, B(Ha), m0) and Y0(w, x)=w(x) for m0(dw)-almost all
w ¥ Ha and each x ¥ Zd.

Definition 2.5. mt is a Borel probability measure in Ha which gives
the distribution of Y(t):

mt(B)=m0(U(−t) B), -B ¥ B(Ha), t ¥ R. (2.8)

Our main goal is to derive the convergence of the measures mt as
t Q .. We establish the weak convergence of mt in the Hilbert spaces Ha

with a < − d/2:

mt −FHa m. as t Q ., (2.9)

where m. is a limit measure on the space Ha, a < − d/2. This means the
convergence

F f(Y) mt(dY) Q F f(Y) m.(dY), t Q ., (2.10)

for any bounded continuous functional f on Ha.

Definition 2.6. The correlation functions of the measure mt are
defined by

Q ij
t (x, y)=E(Y i(x, t) é Y j(y, t)), i, j=0, 1, x, y ¥ Zd, (2.11)

if the expectations in the r.h.s. are finite. Here Y i(x, t) are the components
of the random solution Y(t)=(Y0( · , t), Y1( · , t)).

For a probability measure m on Ha we denote by m̂ the characteristic
functional (Fourier transform)

m̂(Y) — F exp(iOY, YP) m(dY), Y ¥ D.

A measure m is called Gaussian (of zero mean) if its characteristic func-
tional has the form

m̂(Y)=exp{− 1
2 Q(Y, Y)}, Y ¥ D,

where Q is a real nonnegative quadratic form in D. A measure m is called
translation-invariant if m(ThB)=m(B), B ¥ B(Ha), h ¥ Zd, where ThY(x)=
Y(x − h), x ¥ Zd.
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2.3. Mixing Condition

Let O(r) denote the set of all pairs of subsets A, B … Zd at distance
dist(A, B) \ r and let s(A) be a s-algebra in Ha generated by Y(x) with
x ¥ A. Define the Ibragimov–Linnik mixing coefficient of a probability
measure m0 on Ha by (cf. ref. 17, Definition 17.2.2)

j(r) — sup
(A, B) ¥ O(r)

sup
A ¥ s(A), B ¥ s(B)

m0(B) > 0

|m0(A 5 B) − m0(A) m0(B)|
m0(B)

. (2.12)

Definition 2.7. The measure m0 satisfies strong, uniform Ibragimov–
Linnik mixing condition if

j(r) Q 0 as r Q .. (2.13)

Below, we specify the rate of decay of j (see condition S3).

2.4. Statistical Conditions and Results

We assume that the initial measure m0 satisfies the following condi-
tions S0–S3:

S0. m0 has zero expectation value, EY0(x)=0, x ¥ Zd.

S1. m0 has correlation functions of the form (1.7) with condition
(1.8).

S2. m0 has a finite mean energy density, i.e., Eq. (1.9) holds.

S3. m0 satisfies the strong uniform Ibragimov–Linnik mixing condi-
tion with

j̄ — F
+.

0
rd − 1j1/2(r) dr < .. (2.14)

Introduce the correlation matrix of the limit measure m.. It is translation-
invariant

Q.(x, y)=(Q ij
.(x, y))i, j=0, 1=(q ij

.(x − y))i, j=0, 1. (2.15)
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In the Fourier transform we have locally outside the critical set Cg (see
Lemma 2.2)

q̂ ij
.(h)=B(h) M ij

.(h) Bg(h), i, j=0, 1, (2.16)

where B(h) is the smooth unitary matrix from Lemma 2.2(ii) and M ij
.(h) is

n × n-matrix with the smooth entries

M ij
.(h)kl=qkl

5(Bg(h)(M+
0 ) ij (h) B(h))kl

+i sgn 1“wk

“hd
(h)2 (Bg(h)(M−

0 ) ij (h) B(h))kl
6 . (2.17)

Here we set (see (2.5))

qkl=˛1 if k, l ¥ (rs − 1, rs], s=1,..., s+1,

0 otherwise
(2.18)

with r0 :=0, rs+1 :=n, and

M+
0 (h) :=1

2 (q̂+(h)+Ĉ(h) q̂+(h) Ĉg(h)), (2.19)

M−
0 (h) :=1

2 (Ĉ(h) q̂−(h) − q̂−(h) Ĉg(h)), (2.20)

with q+ :=1
2 (q++q− ), q− :=1

2 (q+ − q− ) and

Ĉ(h) :=R 0 W−1(h)
− W(h) 0

S , Ĉg(h) :=R 0 − W(h)

W−1(h) 0
S , (2.21)

where Ĉg denotes a Hermitian conjugate matrix to the matrix Ĉ. The local
representation (2.16) can be expressed globally as the sum:

q̂.(h)=q̂+
.(h)+q̂−

.(h), (2.22)

where

(q̂+
.) ij (h) := C

s+1

s=1
Ps(h)(M+

0 ) ij (h) Ps(h), (2.23)

(q̂−
.) ij (h) := C

s+1

s=1
i sgn 1“wrs

“hd
(h)2 Ps(h)(M−

0 ) ij (h) Ps(h),

h ¥ Td 0Cg, i, j=0, 1. (2.24)

Here Ps(h) is the spectral projection introduced in Lemma 2.2(iv).
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Remark 2.8. From Proposition 5.2(ii) and condition E6 (if C0 ] ”)
it follows that ((M±

0 ) ij)kl ¥ L1(Td), k, l ¥ n̄. Therefore, (2.23), (2.24), and
(2.4) imply that also ((q̂±

.) ij)kl ¥ L1(Td), k, l ¥ n̄.

Theorem A. Let d, n \ 1, a < − d/2, and assume that conditions
E1–E5 and S0–S3 hold. If C0 ] ”, then we assume also that E6 holds. Then

(i) the convergence (2.9) holds and (1.11) also holds.

(ii) The limit measure m. is a Gaussian translation-invariant
measure on Ha.

(iii) The characteristic functional of m. is the Gaussian

m̂.(Y)=exp{− 1
2 Q.(Y, Y)}, Y ¥ D,

where Q. is the quadratic form defined in (1.13).

(iv) The measure m. is invariant, i.e., [U(t)]g m.=m., t ¥ R.

Remark 2.9. (i) In the case d=n=1 we have B(h) — 1, and for-
mulas (2.15)–(2.20) have been obtained in ref. 1, p. 139.

(ii) The uniform Rosenblatt mixing condition (25) also suffices,
together with a higher power > 2 in the bound (1.9): there exists d > 0 such
that

E(|u0(x)|2+d+|v0(x)|2+d) [ C < ..

Then (2.14) requires a modification: >+.

0 rd − 1ap(r) dr < ., where p=
min(d/(2+d), 1/2), where a(r) is the Rosenblatt mixing coefficient defined
as in (2.12) but without m0(B) in the denominator. Under these modifica-
tions, the statements of Theorem A and their proofs remain essentially
unchanged.

(iii) The arguments with condition E5 in Lemmas 8.1 and 8.2 dem-
onstrate that the condition could be considerably weakened. Namely, it
suffices to assume

E5Œ. If for some k ] l we have either wk(h)+wl(h) — const+ or wk(h)
− wl(h) — const− with const± ] 0, then either p11

kl (h) − wk(h) wl(h) p00
kl (h)

— 0, wk(h) p01
kl (h)+wl(h) p10

kl (h) — 0, or p11
kl (h)+wk(h) wl(h) p00

kl (h) — 0,
wk(h) p01

kl (h) − wl(h) p10
kl (h) — 0. Here

p ij
kl(h) :=(Bg(h) q̂ ij

±(h) B(h))kl, h ¥ Td, k, l ¥ n̄, i, j=0, 1, (2.25)

q̂ ij
±(h) are Fourier transforms of covariance matrices q ij

±(z).
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Assertions (i)–(iii) of Theorem A follow from Propositions 2.10 and
2.11 below.

Proposition 2.10. The family of the measures {mt, t ¥ R} is weakly
compact in Ha with any a < − d/2, and the bounds supt \ 0 E ||U(t) Y0 ||2

a

< . hold.

Proposition 2.11. For every Y ¥ D the convergence (1.12) holds.

Proposition 2.10 (Proposition 2.11) provides the existence (resp. the
uniqueness) of the limit measure m.. They are proved in Sections 6 and
8–10, respectively.

Theorem A(iv) follows from (2.9) since the group U(t) is continuous in
Ha by Proposition 2.4(ii).

3. EXAMPLES

Let us give the examples of Eq. (1.2) and measures m0 which satisfy all
our conditions E1–E6 and S0–S3, respectively.

3.1. Nearest Neighbor Crystal

Conditions E1–E6. For any d, n \ 1 we consider the simple elastic
lattice corresponding to the quadratic form

OVu, uP= C
n

k=1
C

x ¥ Z d

1 C
d

i=1
|uk(x+ei) − uk(x)|2+m2

k |uk(x)|22 , mk \ 0,
(3.1)

where ei=(di1,..., did). Then E1 holds and V̂(h)=(w2
k(h) dkl)k, l ¥ n̄ with

wk(h)=` 2(1 − cos h1)+ · · · +2(1 − cos hd)+m2
k, k ¥ n̄. (3.2)

Hence, V(x) satisfies E2–E4 with Cg=”. By (3.2) the identities
wk(h) ± wl(h) — const± with const± ] 0 are impossible, hence condition
E5 holds. In the case when all mk > 0 the set C0={h ¥ Td : det V̂(h)=
w2

1(h) · ... · w2
n(h)=0} is empty and condition E6 is unnecessary. Otherwise,

if mj=0 for some j, the set C0={0}. Then E6 is equivalent to the condi-
tion w−2

j (h) ¥ L1(Td) that holds if d \ 3.
Therefore, all conditions E1–E6 hold for (3.1) in the next cases: (i)

d \ 3, (ii) d=1, 2, and all mk are positive.

Limit Covariance. For example, let us evaluate the limit covariance
q. corresponding to (3.1) with n=1. Denote by E(z)=F−1

h Q z(w−2(h)) the
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fundamental solution for the operator − D+m2 on the lattice Zd, i.e.,
(−D+m2) E(x)=d0x for x ¥ Zd, and P(x)=−iF−1

h Q x
sgn(sin hd)

w(h) . Then

q00
. =1

2 [(q+)00+E f (q+)11+P f ((q−)01 − (q−)10)],

q10
. =−q01

. =1
2 [(q+)10 − (q+)01+P f ((q−)11+(−D+m2)(q−)00)],

q11
. =(−D+m2) q00

. =1
2 [(q+)11+(−D+m2)((q+)00+P f ((q−)01 − (q−)10))],

where f stands for the convolution of functions.

3.2. Gaussian Initial Measures

For simplicity, we consider n=1 and construct Gaussian initial mea-
sures m0 satisfying S0–S3. We will define m± in Ha by the correlation func-
tions q ij

±(x − y) which are zero for i ] j, while for i=0, 1,

q̂ ii
±(h) :=Fz Q h[q ii

±(z)] ¥ L1(Td), q̂ ii
±(h) \ 0. (3.3)

Then by the Minlos theorem, (3) there exist Borel Gaussian measures m±

on Ha, a < − d/2, with the correlation functions q ij
±(x − y), because for-

mally we have

F ||Y||2
a m±(dY)= C

x ¥ Z d
(1+|x|2)a (tr q00

± (0)+tr q11
± (0))

=C(a, d) F
T d

tr(q̂00
± (h)+q̂11

± (h)) dh < ..

The measures m± satisfy S0, S2. Let us take the functions z± ¥ C(Z) such
that

z±(s)=˛1, for ± s > a,

0, for ± s < − a.
(3.4)

Let us introduce (Y− , Y+) as a unit random function in probability space
(Ha ×Ha, m− × m+). Then Y± are Gaussian independent vectors in Ha.
Define a ‘‘two-temperature’’ Borel probability measure m0 as a distribution
of the random function

Y0(x)=z− (xd) Y− (x)+z+(xd) Y+(x). (3.5)

Then correlation functions of m0 are

Q ij
0 (x, y)=q ij

− (x − y) z− (xd) z− (yd)+q ij
+(x − y) z+(xd) z+(yd), i, j=0, 1,

(3.6)
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where x=(x1,..., xd), y=(y1,..., yd) ¥ Zd, and q ij
± are the correlation func-

tions of the measures m±. The measure m0 satisfies S0–S2. Further, let us
assume, in addition to (3.3), that

q ii
±(z)=0, |z| \ r0. (3.7)

Then the mixing condition S3 follows with j(r)=0, r \ r0. For instance,
(3.3) and (3.7) hold if we set q ii

±(z)=f(z1) f(z2) · · · f(zd), where f(z)=
N0 − |z| for |z| [ N0 and f(z)=0 for |z| > N0 with N0 :=[r0/`d] (the
integer part). Then by the direct calculation we obtain f̂(h)=(1 − cos N0h)/
(1 − cos h), h ¥ T1, and (3.3) holds.

3.3. Non-Gaussian Initial Measures

Let us choose some odd bounded nonconstant functions f0, f1 ¥ C(R).
Define mg

0 as the distribution of the random function (f0(Y0(x)),
f1(Y1(x))), where (Y0, Y1) is a random function with a Gaussian distribu-
tion m0 from the previous example. Then S0–S3 hold for mg

0 with cor-
responding mixing coefficient jg(r)=0 for r \ r0. Measure mg

0 is not
Gaussian if the functions f0, f1 are bounded and nonconstant.

4. APPLICATION TO SECOND LAW

We apply Theorem A to the case when m± are the Gibbs measures
corresponding to distinct positive temperatures T− ] T+. We deduce
that for the limit mean energy current j.=(j 1

.,..., j d
.) we have j d

.=
−C(T+ − T− ) with C > 0. Moreover, under the additional condition on V
we obtain j k

.=0, k=1,..., d − 1. This means that the mean energy current
is directed from high to low temperature in accordance with Second Law.

4.1. Energy Current

4.1.1. Energy Current for Finite Energy Solutions

We derive formally the expression for the energy current of the finite
energy solutions u(x, t) (see (1.5)). For the half-space Wk :={x ¥ Zd :
xk \ 0} we define the energy in the region Wk (cf (1.5)) as

Ek(t) :=1
2 C

x ¥ Wk

3 |u̇(x, t)|2+ C
y ¥ Z d

(u(x, t), V(x − y) u(y, t))4 .
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By formal calculation, using Eq. (1.2) we obtain

Ėk(t)=1
2
1 C

x ¥ W
c
k, y ¥ Wk

(u̇(x, t), V(x − y) u(y, t))

− C
x ¥ Wk, y ¥ W

c
k

(u̇(x, t), V(x − y) u(y, t))2 . (4.1)

Here Wc
k :=Zd 0Wk={x ¥ Zd : xk < 0}. Introduce new variables: x=xŒ+mek,

y=yŒ+pek, where xŒ, yŒ ¥ Zd with x −

k=y −

k=0, ek=(dk1,..., dkd), k=
1,..., d. Then we rewrite (4.1) in the form

Ėk(t)=1
2 C

xŒ, yŒ

3 C
m [ − 1, p \ 0

(u̇(xŒ+mek, t), V(xŒ+mek − yŒ − pek) u(yŒ+pek, t))

− C
m \ 0, p [ − 1

(u̇(xŒ+mek, t), V(xŒ+mek − yŒ − pek) u(yŒ+pek, t))4

=C
xŒ

jk(xŒ, t).

Here jk(xŒ, t) stands for the energy current density in the direction ek: by
definition,

jk(xŒ, t) :=1
2 C

yŒ

3 C
m [ − 1, p \ 0

(u̇(xŒ+mek, t), V(xŒ+mek − yŒ − pek) u(yŒ+pek, t))

− C
m \ 0, p [ − 1

(u̇(xŒ+mek, t), V(xŒ+mek − yŒ − pek) u(yŒ+pek, t))4 ,

where xŒ, yŒ ¥ Zd with x −

k=y −

k=0.

4.1.2. Limit Mean Energy Current

Now let u(x, t) be the random solution to (1.2) with the initial measure
m0 satisfying S0–S3. Then the bounds E1 and (6.3) (see below) imply for
the mathematical expectation:

Ejk(xŒ, t)=1
2 C

yŒ

1 C
m [ − 1, p \ 0

tr[Q10
t (x+mek, yŒ+pek) VT(xŒ − yŒ+(m − p) ek)]

− C
m \ 0, p [ − 1

tr[Q10
t (xŒ+mek, yŒ+pek) VT(xŒ − yŒ+(m − p) ek)]2 .
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Therefore, from the convergence (1.11) it follows that in the limit t Q . we
get

Ejk(xŒ, t) Q j k
.

=1
2 C

yŒ

1 C
m [ − 1, p \ 0

tr[q10
. (xŒ − yŒ+(m − p) ek) VT(xŒ − yŒ+(m − p) ek)]

− C
m \ 0, p [ − 1

tr[q10
. (xŒ − yŒ+(m − p) ek) VT(xŒ − yŒ+(m − p) ek)]2 .

Denote by xŒ − yŒ=: zŒ, m − p=: s and changing the order of the summa-
tion in the series we get (taking into account that V̂g(h)=V̂(h))

j k
.= − 1

2 C
zŒ

C
s ¥ Z

1
tr[q10

. (zŒ+sek) VT(zŒ+sek)] s

=− 1
2 C

z ¥ Z d
tr[q10

. (z) zkVT(z)]

= − i
(2p)−d

2
tr F

T d
q̂10

. (h) “kV̂(h) dh, k=1,..., d. (4.2)

4.2. Gibbs Measures

4.2.1. Definition of the Gibbs Measures

Formally Gibbs measures g± are

g±(du0, dv0)=
1

Z±
e−

b±
2

; x (|v0(x)|2+OVu0, u0P) D
x

du0(x) dv0(x),

where b±=T−1
± , T± \ 0 are the corresponding absolute temperatures. We

introduce the Gibbs measures g± as the Gaussian measures with the corre-
lation matrices defined by their Fourier transform as

q̂00
± (h)=T±V̂−1(h), q̂11

± (h)=T±(dkl)k, l ¥ n̄, q̂01
± (h)=q̂10

± (h)=0. (4.3)

Let Ha(Zd) be the Banach space of the vector-valued functions u(x) ¥ Rn

with the finite norm

||u||2
a — C

x ¥ Z d
(1+|x|2)a |u(x)|2 < ..

Let us fix arbitrary a < − d/2. Introduce the Gaussian Borel probability
measures g0

±(du), g1
±(dv) in spaces Ha(Zd) with characteristic functionals

(b±=1/T±)
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ĝ0
±(k)=F exp{iOu, kP} g0

±(du)=exp 3−
OV−1k, kP

2b±

4

ĝ1
±(k)=F exp{iOv, kP} g1

±(dv)=exp 3−
Ok, kP

2b±

4
: k ¥ D — C0(Zd) é Rn.

By the Minlos theorem, (3) the Borel probability measures g0
±, g1

± exist in the
spaces Ha(Zd) because formally we have

F ||u||2
a g0

±(du)= C
x ¥ Z d

(1+|x|2)a C
n

i=1
F u i(x) u i(x) g0

±(du)

= C
x ¥ Z d

(1+|x|2)a tr q00
± (0) < .,

since a < − d/2 and

tr q00
± (0)=(2p)−d F

T d
tr q̂00

± (h) dh=T±(2p)−d F
T d

tr V̂−1(h) dh < ..

The last bound is obvious if C0=” and it follows from condition E6 if
C0 ] ”. Similarly,

F ||v||2
a g1

±(dv)=T±n C
x ¥ Z d

(1+|x|2)a < ., a < − d/2.

Finally, we define the Gibbs measures g±(dY) as the Borel probability
measures g0

±(du) × g1
±(dv) in {Y ¥ Ha : Y=(u, v)}. Let g0(dY) be a ‘‘two-

temperature’’ Borel probability measure in Ha that is constructed in Sec-
tion 2.5.2 with m±(dY)=g±(dY) and Y0 be a random function with distri-
bution g0. Denote by gt the distribution of U(t) Y0, t ¥ R. Now we assume,
in addition, that C0=”, i.e., (cf. condition E6)

det V̂(h) ] 0, -h ¥ Td. (4.4)

Note that in the case of canonical Gibbs measures condition E5Œ is fulfilled
(see Remark 2.9(iii)). Indeed, by (4.3) we have

p00
kl (h) — (Bg(h) q̂00

± (h) B(h))kl=T±(Bg(h) V̂−1(h) B(h))kl=T±w−2
k (h) dkl,

(4.5)

p11
kl (h) — (Bg(h) q̂11

± (h) B(h))kl=T±dkl. (4.6)

Hence, p ij
kl(h) — (Bg(h) q̂ ij

±(h) B(h))kl=0 for k ] l, -i, j.
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Theorem 4.1. Let conditions E1–E4, (4.4) hold and a < − d/2.
Then there exists a Gaussian Borel probability measure g. on Ha such that

gt −FHa g., t Q .. (4.7)

Proof. Let us denote by Qt(x, y) the covariance matrix of measure gt,
t ¥ R. Note that owing to (3.6), the matrix Q0(x, y) is a ‘‘linear combina-
tion’’ of q±(x − y). Hence, Q0(x, y) satisfies conditions S0–S2. Therefore,
by (4.3) we have

|Q0(x, y)| [ C1+C
±

C± |q00
± (x − y)|, x, y ¥ Zd.

Condition (4.4) implies

|q00
± (z)|=T± |F−1

h Q z[V̂−1(h)]| ’ (1+|z|)−N, -N ¥ N. (4.8)

Hence, Lemma 6.1 and Proposition 7.1 (with condition E5Œ instead of E5,
see Remark 2.9(iii)) are applicable to the correlation matrix Qt(x, y), since
the proof uses only the bounds of covariance (5.1), (5.2). These bounds are
now provided by the decay (4.8) instead of mixing condition S3. Hence,
Qt(x, y) Q Q.(x, y), as t Q ., and the family of measures {gt, t ¥ R} is
weakly compact in Ha, a < − d/2. Hence, the convergence (4.7) holds
because gt are Gaussian measures. L

4.2.2. Limit Covariance and Energy Current for the
Gibbs Measures

Now we rewrite the limit covariance q̂.(h) and the limit mean energy
current j. defined by (4.2) in the case of the initial measure m0=g0 with
m±=g± defined above. At first, by (2.19)–(2.21) and (4.3) we have

M+
0 (h)=T̄ R V̂−1(h) 0

0 1
S , M−

0 (h)=DT R 0 W−1(h)
− W−1(h) 0

S , (4.9)

where T̄ :=T++T−
2 , DT :=T+− T−

2 . Therefore, from Lemma 2.2(iv) and
(2.22)–(2.24) we get

q̂00
. (h)=T̄V̂−1(h), q̂11

. (h)=T̄,

q̂10
. (h)= − q̂01

. (h)=−i DT C
s+1

s=1
sgn 1“wrs

“hd
(h)2 w−1

rs
(h) Ps(h).

(4.10)
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Substituting q̂10
. (h) from (4.10) in the r.h.s. of (4.2), we obtain by (2.7)

j k
.=−

DT
2(2p)d tr F

T d
1 C

s+1

s=1
sgn 1“wrs

“hd
(h)2 w−1

rs
(h) Ps(h)2

×
“

“hk

1 C
s+1

sŒ=1
w2

rsŒ
(h) PsŒ(h)2 dh. (4.11)

Since Ps(h) are the orthogonal projections, we have

tr[Ps(h) PsŒ(h)]=˛0, if s ] sŒ,

rs, if s=sŒ.

Moreover, tr[Ps(h) “kPsŒ(h)]=0, k=1,..., d. Hence, we get

j k
.= −

DT
(2p)d C

s+1

s=1
F

T d
rs sgn 1“wrs

“hd
(h)2 “wrs

“hk
(h) dh

= −
DT

(2p)d C
c ¥ n̄

F
T d

sgn 1“wc

“hd
(h)2 “wc

“hk
(h) dh. (4.12)

Remark 4.2. (i) From (4.12) it follows that j d
.=− DT

(2p)d ;c ¥ n̄

>T d |
“wc

“hd
(h)| dh < 0 if T+ > T− .

(ii) In some particular cases we have j k
.=0 for k=1,..., d − 1: for

example, (a) if each wc(h) is even on every variable h1,..., hd − 1, or (b) if
sgn(

“wc

“hd
(h)) depends only on variable hd. For instance, (a) and (b) hold for

the nearest neighbor crystal, what follows by (3.2).

(iii) q̂10
. generally is a discontinuous function by (4.10). Therefore,

q10
. (x) decays as a negative power of |x|. The exponential decay is impos-

sible in contrast with ref. 20.

5. BOUNDS FOR INITIAL COVARIANCE

Definition 5.1. By lp — lp(Zd) é Rn, p \ 1, n \ 1, we denote the
space of sequences f(k)=(f1(k),..., fn(k)) endowed with norm ||f||lp=
(;k ¥ Z d |f(k)|p)1/p.

The next proposition reflects the mixing property in the Fourier
transforms q̂ ij

± of initial correlation functions q ij
±. Condition S2 implies that

q ij
±(z) are bounded functions. Therefore, its Fourier transform generally

belongs to the Schwartz space of tempered distributions.
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Proposition 5.2. Let conditions S0–S3 hold. Then

(i) For i, j=0, 1, the following bounds hold

C
y ¥ Z d

|Q ij
0 (x, y)| [ C < . for all x ¥ Zd, (5.1)

C
x ¥ Z d

|Q ij
0 (x, y)| [ C < . for all y ¥ Zd. (5.2)

Here the constant C does not depend on x, y ¥ Zd.
(ii) q̂ ij

± ¥ C(Td), i, j=0, 1.

Proof ad (i). Conditions S0, S2, and S3 imply by ref. 17, Lemma
17.2.3 (or Lemma 9.4(i) below):

|Q ij
0 (x, y)| [ Ce0j1/2(|x − y|), x, y ¥ Zd. (5.3)

Hence, (2.14) implies (5.1):

C
y ¥ Z d

|Q ij
0 (x, y)| [ Ce0 C

z ¥ Z d
j1/2(|z|) < .. (5.4)

Proof ad (ii). The bound (5.3) and condition (1.8) imply the follow-
ing bound:

|q ij
±(z)| [ Ce0j1/2(|z|), z ¥ Zd. (5.5)

Hence, from (2.14) it follows that q ij
±(z) ¥ l1, what implies q̂ ij

± ¥ C(Td). L

Corollary 5.3. Proposition 5.2(i) implies, by the Shur lemma, that
for any F, Y ¥ l2 the following bound holds:

|OQ0(x, y), F(x) é Y(y)P| [ C ||F||l2 ||Y||l2. (5.6)

6. COMPACTNESS OF MEASURES FAMILY

Proposition 2.10 follows from the bound (6.1) by the Prokhorov
Theorem, ref. 28, Lemma II.3.1 using the method of ref. 28, Theorem
XII.5.2, since the embedding Ha … Hb is compact if a > b.

Lemma 6.1. Let conditions S0, S2, S3 hold and a < − d/2. Then the
following bounds hold

sup
t \ 0

E ||U(t) Y0 ||2
a < .. (6.1)
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Proof. Definition (2.1) implies

E ||Y( · , t)||2
a= C

x ¥ Z d
(1+|x|2)a (tr Q00

t (x, x)+tr Q11
t (x, x)) < .. (6.2)

Since a < − d/2, it remains to prove that

sup
t ¥ R

sup
x, y ¥ Z d

||Qt(x, y)|| [ C < .. (6.3)

The representation (A.3) gives

Q ij
t (x, y)=E(Y i(x, t) é Y j(y, t))

= C
xŒ, yŒ ¥ Z d

C
k, l=0, 1

G ik
t (x − xŒ) Qkl

0 (xŒ, yŒ) G jl
t (y − yŒ)

=OQ0(xŒ, yŒ), F i
x(xŒ, t) é F j

y(yŒ, t)P, (6.4)

where

F i
x(xŒ, t) :=(G i0

t (x − xŒ), G i1
t (x − xŒ)), xŒ ¥ Zd, i=0, 1.

Note that the Parseval identity, (A.5) and condition E6 imply

||F i
x( · , t)||2

l2=(2p)−d F
T d

|F̂ i
x(h, t)|2 dh

=(2p)−d F
T d

(|G1 i0
t (h)|2+|G1 i1

t (h)|2) dh [ C0 < ..

Then Corollary 5.3 gives

|Q ij
t (x, y)|=|OQ0(xŒ, yŒ), F i

x(xŒ, t) é F j
y(yŒ, t)P|

[ C ||F i
x( · , t)||l2 ||F j

y( · , t)||l2 [ C1 < ., (6.5)

where the constant C1 does not depend on x, y ¥ Zd, t ¥ R. L

7. ‘‘CUTTING OUT’’ OF CRITICAL SPECTRUM

We reduce the proof of the convergences (1.11) and (1.12) by a suit-
able spectral analysis.

7.1. Equicontinuity of Covariance

Obviously, (1.11) is equivalent to the next proposition.
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Proposition 7.1. Let conditions E1–E6 and S0–S3 hold. Then
-Y ¥ D

Qt(Y, Y) Q Q.(Y, Y), t Q .. (7.1)

Let us show that we can restrict ourselves Y ¥ D0, where D0 is a subset
of functions Y ¥ D with vanishing spectrum in a neighborhood of a critical
set C … Td. For k=1,..., n define the sets

Zk :={h ¥ Td 0Cg : Nhd
wk(h)=0}.

Definition 7.2. (i) The critical set C :=C0 2 Cg 2 (1n
1 Zk) 2 (1n

1 Ck)
(see E4).

(ii) D0 :={Y ¥ D : Ŷ(h)=0 in a neighborhood of C}.

The next lemma plays the central role in our arguments although its
proof is similar to the proofs of Lemmas 2.2 and 2.3 since C ] Td.

Lemma 7.3. Let conditions E1–E4 hold. Then mes C=0.

Next, we introduce a norm || · ||V in the space D such that (i) D0 is
dense in D in this norm, while (ii) the quadratic forms Qt(Y, Y), t ¥ R, are
equicontinuous in this norm. Then it suffices to prove (7.1) for Y ¥ D0 only.

Definition 7.4. DV is the space D endowed with the norm

||Y||2
V :=F

T d
(1+||V−1(h)||) |Ŷ(h)|2 dh, Y ¥ D, (7.2)

which is finite by condition E6.

The set D0 is dense in DV by Lemma 7.3 and condition E6.

Lemma 7.5. The quadratic forms Qt(Y, Y), t ¥ R, are equicontin-
uous in DV.

Proof. It suffices to prove the uniform bounds

sup
t ¥ R

|Qt(Y, Y)| [ C ||Y||2
V, Y ¥ D. (7.3)

Definition (2.11) implies that Qt(Y, Y) :=E |OY(x, t), Y(x)P|2. Note that

OY(x, t), Y(x)P=OY0(x), F(x, t)P, (7.4)
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where F( · , t) :=F−1[G1 g
t (h) Ŷ(h)]. Therefore, Qt(Y, Y)=Q0(F( · , t),

F( · , t)), so

sup
t ¥ R

|Qt(Y, Y)| [ C sup
t ¥ R

||F( · , t)||2
l2 (7.5)

by Corollary 5.3. Finally, by the Parseval identity and (A.5), we get

||F( · , t)||2
l2=(2p)−d F

T d
||G1 g

t (h)||2 |Ŷ(h)|2 dh [ C ||Y||2
V. L (7.6)

7.2. Equicontinuity of Characteristic Functionals

The convergence (1.12) also it suffices to prove for Y ¥ D0 only. This
follows from the next lemma.

Lemma 7.6. The characteristic functionals m̂t(Y), t ¥ R, are equi-
continuous in DV.

Proof. This lemma follows immediately from Lemma 7.5 by the
Cauchy–Schwartz inequality:

|m̂t(Y1) − m̂t(Y2)|=:F (e iOY, Y1P− e iOY, Y2P) mt(dY):

[ F |e iOY, Y1 − Y2P− 1| mt(dY)

[ F |OY, Y1 − Y2P| mt(dY) [ =F |OY, Y1 − Y2P|2 mt(dY)

=`Qt(Y1 − Y2, Y1 − Y2) [ C ||Y1 − Y2 ||V. L

8. CONVERGENCE OF COVARIANCE FOR NON-CRITICAL

SPECTRUM

We prove Proposition 7.1 for Y ¥ D0. First we split the initial covari-
ance into the following matrices

Q+(x, y) :=q+(x − y), (8.1)

Q−(x, y) :=q−(x − y) sgn yd, (8.2)

Q r(x, y) :=Q0(x, y) − Q+(x, y) − Q−(x, y) (8.3)

On Two-Temperature Problem for Harmonic Crystals 1059



where q+=1
2 (q++q− ), q−=1

2 (q+ − q− ). Since the solution Y(t) to Cauchy
problem (1.2) admits the representation (A.3), we have

Qt(x, y)= C
xŒ, yŒ ¥ Z d

(Gt(x − xŒ) Q0(xŒ, yŒ) GT
t (y − yŒ)).

Next introduce the matrices

Qa
t (x, y)= C

xŒ, yŒ ¥ Z d
(Gt(x − xŒ) Qa(xŒ, yŒ) GT

t (y − yŒ)), x, y ¥ Zd, t > 0,
(8.4)

for each a={+, −, r}, and split Qt(x, y) into three terms: Qt(x, y)=
Q+

t (x, y)+Q−
t (x, y)+Qr

t (x, y). Below in Lemmas 8.1, 8.2, 8.4 we will
prove the convergence of type (7.1) to a limit for each term Qa

t (x, y).

8.1. Convergence of Q+
t (x, y)

Lemma 8.1. lim t Q . OQ+
t (x, y), Y(x) é Y(y)P=Oq+

.(x − y), Y(x)
é Y(y)P for any Y ¥ D0, where the matrix q+

. is defined by (2.23).

Proof. At first, let us apply the Fourier transform to the matrix
Q+

t (x, y) defined by (8.4). Then we have Q̂+
t (h, hŒ) :=Fx Q h

y Q− hŒ

Q+
t (x, y)=

G1t(h) Q̂+(h, hŒ) G1 T
t (−hŒ), where Q̂+(h, hŒ) :=Fx Q h

y Q− hŒ

Q+(x, y). From (8.1) it
follows that Q̂+(h, hŒ)=d(h − hŒ) (2p)d q̂+(h). Hence,

Q̂+
t (h, hŒ)=(2p)d d(h − hŒ) G1t(h) q̂+(h) G1 g

t (h). (8.5)

Here we use that G1 T
t (−h)=G1 g

t (h) by condition E2. Therefore,

OQ+
t (x, y), Y(x) é Y(y)P=(2p)−2d OQ̂+

t (h, hŒ), Ŷ(h) é Ŷ(hŒ)P

=(2p)−d OG1t(h) q̂+(h) G1 g
t (h), Ŷ(h) é Ŷ(h)P.

(8.6)

Further, we choose certain smooth branches of the functions B(h) and
wk(h) to apply the stationary phase arguments which require a smoothness
in h. We choose a finite partition of unity

C
M

m=1
gm(h)=1, h ¥ supp Ŷ, (8.7)

where gm are nonnegative functions from C.

0 (Td) and vanish in a neigh-
borhood of the set C defined in Definition 7.2(i). Further, using (8.7) we
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rewrite the r.h.s. of (8.6). Applying formulas (A.6), (A.7) for G1t(h), G1 g
t (h),

we obtain (see Appendix A)

OQ+
t (x, y), Y(x) é Y(y)P

=(2p)−d C
m

F
T d

gm(h)(B(h) Rt(h) Bg(h), Ŷ(h) é Ŷ(h)) dh, (8.8)

where by Rt(h) we denote the 2n × 2n matrix with the entries (cf. (A.13)):

Rt(h)kl=
1
2 C

±
{cos(wk(h) ± wl(h)) t[Bg(h)(q̂+(h) + Ĉ(h) q̂+(h) Ĉg(h)) B(h)]kl

+sin(wk(h) ± wl(h)) t[Bg(h)(Ĉ(h) q̂+(h) ± q̂+(h) Ĉg(h)) B(h)]kl}.

(8.9)

By Lemma 2.2 and the compactness arguments, we choose the eigenvalues
wk(h) and the matrix B(h) as real-analytic functions inside the supp gm for
every m: we do not mark the functions by the index m to not overburden
the notations. Now we analyze the Fourier integrals with gm.

At first, note that the identities wk(h)+wl(h) — const+ or wk(h) − wl(h)
— const− with the const± ] 0 are impossible by condition E5. Furthermore,
the oscillatory integrals with wk(h) ± wl(h) – const vanish as t Q .. Hence,
only the integrals with wk(h) − wl(h) — 0 contribute to the limit, since
wk(h)+wl(h) — 0 would imply wk(h) — wl(h) — 0 which is impossible by E4.
We enumerate the eigenvalues wk(h) as in (2.5). Then if k, l ¥ (rs − 1, rs],
we have cos(wk − wl) t=1 for s=1,..., s+1. By formula (A.15) with
q̂(h) :=q̂+(h) and (8.8), (8.9), we get

OQ+
t (x, y), Y(x) é Y(y)P

=(2p)−d C
m

F
T d

gm(h)(B(h)[qkl(Bg(h) M+
0 (h) B(h))kl]k, l ¥ n̄

× Bg(h)+ · · · , Ŷ(h) é Ŷ(h)) dh

=(2p)−d F
T d

(q̂+
.(h), Ŷ(h) é Ŷ(h)) dh+ · · · , (8.10)

where M+
0 (h) is defined in (2.19), ‘‘ · · · ’’ stands for the oscillatory integrals

which contain cos(wk(h) ± wl(h)) t and sin(wk(h) ± wl(h)) t with wk(h) ±
wl(h) – const. The oscillatory integrals converge to zero by the Lebesgue–
Riemann Theorem since all the integrands in ‘‘ · · · ’’ are summable, and
N(wk(h) ± wl(h))=0 only on the set of the Lebesgue measure zero. The
summability follows from Proposition 5.2(ii) and E6 (if C0 ] ”) since the
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matrices B(h) are unitary. The zero measure follows similarly to (2.4) since
wk(h) ± wl(h) – const. Lemma 8.1 is proved. L

8.2. Convergence of Q−
t (x, y)

Lemma 8.2. lim t Q . OQ−
t (x, y), Y(x) é Y(y)P=Oq−

.(x − y), Y(x)
é Y(y)P for any Y ¥ D0, where the matrix q−

. is defined in (2.24).

Proof.

Step 1. At first we apply the Fourier transform to Q−
t (x, y) defined

by (8.4):

Q̂−
t (h, hŒ) :=Fx Q h

y Q− hŒ

Q−
t (x, y)=G1t(h) Q̂−(h, hŒ) G1 T

t (−hŒ), (8.11)

where Q̂−(h, hŒ) :=Fx Q h
y Q− hŒ

Q−(x, y). Similarly to (8.6) and (8.8) using the
partition of unity (8.7) and also formulas (A.10) and (A.11) we obtain

OQ−
t (x, y), Y(x) é Y(y)P

=(2p)−2d OQ̂−
t (h, hŒ), Ŷ(h) é Ŷ(hŒ)P

=(2p)−2d C
m, mŒ

Ogm(h) gmŒ(hŒ) B(h) Rt(h, hŒ) Bg(hŒ), Ŷ(h) é Ŷ(hŒ)P,
(8.12)

where Rt(h, hŒ) is defined in (A.11) with Q̂(h, hŒ) :=Q̂−(h, hŒ). Second, we
have Fy Q h(sgn y)=i PV( 1

tg(h/2)), h ¥ T1, where PV stands for the Cauchy
principal part and y ¥ Z1. Hence, by (8.2), we obtain

Q̂−(h, hŒ)=d(h̄ − h̄Œ)(2p)d − 1 i PV 1 1
tg(hd − h −

d)/2
2 q̂−(h). (8.13)

Here h̄=(h1,..., hd − 1), h̄Œ=(h −

1,..., h −

d − 1), h=(h̄, hd), hŒ=(h̄Œ, h −

d) ¥ Td.
Note that the Fourier transform of Q−

t (x, y) is more singular than of
Q+

t (x, y) (cf. formulas (8.5) and (8.11), (8.13)). Therefore it is of key
importance that we can restrict ourselves by the functions Y ¥ D0. Further,
(8.13) and (A.11) with Q̂(h, hŒ) :=Q̂−(h, hŒ) imply

Rt(h, hŒ)kl=d(h̄ − h̄Œ)(2p)d − 1 i PV 1 1
tg(hd − h −

d)/2
2

· C
±

{cos w±
klt(M±

1 (h, hŒ))kl+sin w±
klt(M±

2 (h, hŒ))kl}. (8.14)

Here w±
kl — w±

kl(h, hŒ) :=wk(h) ± wl(hŒ), M±
1 (h, hŒ) :=Bg(h) 1

2 (q̂−(h) + Ĉ(h)
× q̂−(h) Ĉg(hŒ)) B(hŒ), M±

2 (h, hŒ) :=Bg(h) 1
2 (Ĉ(h) q̂−(h)± q̂−(h) Ĉg(hŒ)) B(hŒ).
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Let us analyze the summands in the r.h.s. of (8.12). Since cos(w±
klt)=

eiw±
klt+e − iw±

klt

2 and sin(w±
klt)=eiw±

klt − e − iw±
klt

2i it suffices to prove the convergence
for arising integrals I±

kl(t) resp. J±
kl(t) with e iw ±

klt resp. e−iw ±
klt (see Step 2 resp.

Step 3).

Step 2. First, we consider the integrals I±
kl(t). Let us denote, for

simplicity of exposition, gm — gm(h), gmŒ — gmŒ(hŒ), and Ŷr(h) :=(Ŷ0
r (h),

Ŷ1
r (h)). Also let us denote by pkl(h, hŒ) one of the expressions Brk(h) ×

(M±
i (h, hŒ))kl Bg

ks(hŒ) with either + or − , and some i=1, 2, r, s ¥ n̄. Then
(8.12) and (8.14) give,

I±
kl(t) :=(2p)−2d 7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV

1
tg(hd − h −

d)/2

× e iw ±
kltpkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8

=(2p)−d − 1 i F
T d

gme iwk(h) tŶr(h)

×1PV F
T1

gmŒe ± iw l(hŒ) t pkl(h, hŒ) Ŷs(hŒ)
tg(hd − h −

d)/2
:
hŒ=(h̄, hŒd)

dh −

d
2 dh. (8.15)

The integral with PV in the r.h.s. of (8.15) exists since wl(hŒ) are analytic
inside the supp gmŒ(hŒ). Changing variables h −

d Q hd − h −

d=t in the inner
integral in the r.h.s. of (8.15) we obtain

I±
kl(t)=(2p)−d − 1 i F

T d
gme iwk(h) tŶr(h)

×1PV F
T1

gmŒe ± iw l(hŒ) t pkl(h, hŒ) Ŷs(hŒ)
tg(t/2)

:
hŒ=(h̄, hd − t)

dt2 dh. (8.16)

From Definition 7.2 it follows that NhŒd
wl(hŒ) ] 0 for hŒ ¥ supp gmŒ …

supp Ŷ. Next lemma follows from ref. 1, Proposition A.4(i), (ii).

Lemma 8.3. Let Nhd
wl(h) ] 0 for h ¥ supp gmŒ and p(h) ¥ C1(Td).

Then

Pl(h, t) :=PV F
T1

gmŒ(h̄, hd − t)
e ± iw l(h̄, hd − t) t

tg(t/2)
p(h̄, hd − t) dt

=2pi gmŒ(h) e ± iw l(h) tp(h) sgn 1+
“wl

“hd
(h)2+o(1), t Q+.,

(8.17)
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for h ¥ supp gmŒ, and

sup
h ¥ T d, t ¥ R, l ¥ n̄

|Pl(h, t)| < .. (8.18)

Applying Lemma 8.3 to the inner 1D integral in (8.16), we obtain as
t Q+.,

I±
kl(t)=−(2p)−d F

T d
gm(h) gmŒ(h) e iw ±

kl(h, h) tpkl(h, h)

× sgn 1+
“wl

“hd
(h)2 Ŷr(h) Ŷs(h) dh+o(1), (8.19)

where w±
kl(h, h) — wk(h) ± wl(h). Let us discuss the limits of the integrals

I±
kl(h) as t Q+.. At first, we note that the identities w+

kl(h, h) — const+

or w−
kl(h, h) — const− with the const± ] 0 are impossible by condition E5.

On the other hand, the oscillatory integrals with w±
kl(h, h) – const vanish

as t Q . owing to Proposition 5.2(ii), E4, E5, E6 (if C0 ] ”) and the
Lebesgue–Riemann theorem (as in Lemma 8.1). Hence,

I+
kl(t) Q 0, t Q+.. (8.20)

Similarly, in the case w−
kl(h, h) – 0, we have I−

kl(t) Q 0, as t Q .. Therefore,
only integrals with w−

kl(h, h) — 0, i.e., k, l ¥ (rs − 1, rs], s=1,..., s+1 (see
(2.5)), contribute to a limit. Finally, by (2.18), we get

I−
kl(t)=−(2p)−d F

T d
gm gmŒqkl pkl(h, h)

× sgn 1“wk

“hd
(h)2 Ŷr(h) Ŷs(h) dh+o(1), t Q+.. (8.21)

Step 3. Now consider the integrals J±
kl(t) of type (8.15) with e−iw ±

klt

instead of e iw ±
klt. Similarly to (8.15)–(8.20), we get

J+
kl(t) :=(2p)−2d 7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV

1
tg(hd − h −

d)/2

× e−iw+
kl tpkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8

=o(1), t Q .. (8.22)

The same decay as t Q+. is valid if we substitute w−
kl in (8.22) instead of

w+
kl for all k, l ¥ n̄ except when k, l ¥ (rs − 1, rs]. For k, l ¥ (rs − 1, rs] we have
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wk(h) — wl(h). Hence, by the arguments of type (8.15)–(8.19) and (8.21),
we obtain

J−
kl(t)=(2p)−2d 7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV

1
tg(hd − h −

d)/2

× e−iw −
kl tpkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8

=(2p)−d F
T d

gm gmŒqkl pkl(h, h)

× sgn 1“wk

“hd
(h)2 Ŷr(h) Ŷs(h) dh+o(1), t Q+.. (8.23)

From (8.20), (8.22) it follows that for any k, l ¥ n̄ as t Q .,

7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV
1

tg(hd − h −

d)/2

× cos(w±
klt) pkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8=o(1), (8.24)

since the signs in (8.21) and (8.23) are opposite. Similarly, by (8.20) and
(8.22), we have

7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV
1

tg(hd − h −

d)/2

× sin(w+
klt) pkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8=o(1), t Q .. (8.25)

The same relation holds if we substitute w−
kl in the l.h.s. of (8.25) instead of

w+
kl for all k, l ¥ n̄ except when k, l ¥ (rs − 1, rs]. At last, using (8.23), we get:

(2p)−2d 7 gm gmŒd(h̄ − h̄Œ)(2p)d − 1 i PV
1

tg(hd − h −

d)/2

× sin(w−
klt) pkl(h, hŒ), Ŷr(h) é Ŷs(hŒ)8

=(2p)−d 7 gm gmŒqkl i sgn 1“wk

“hd
(h)2 pkl(h, h), Ŷr(h) é Ŷs(h)8

+o(1), t Q+.. (8.26)
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Here (see Steps 1 and 2) by pkl(h, h) we denote

pkl(h, h) — Brk(h)(M−
2 (h, h))kl Bg

ks(h) — Brk(h)(Bg(h) M−
0 (h) B(h))kl Bg

ks(h),

where M−
0 (h) is defined by (2.20).

Step 4. Now we return to the r.h.s. of (8.12). Let us substitute (8.14)
in (8.12). Then by (8.24) the summands in the r.h.s. of (8.12) with cos w±

klt
tend to zero. Further, by (8.25), (8.26) only integrals with sin w−

klt, k, l ¥

(rs − 1, rs], s=1,..., s+1 contribute to a limit. Finally, (8.12), (8.14), and
(8.22)–(8.26) imply,

OQ−
t (x, y), Y(x) é Y(y)P

=(2p)−d C
m, mŒ

7 gm gmŒB(h) 5qkli sgn 1“wk

“hd
(h)2 M−

2 (h, h)kl
6

k, l ¥ n̄
Bg(h),

Ŷ(h) é Ŷ(h)8+o(1)

=(2p)−d C
m, mŒ

Ogm gmŒ q̂−
.(h), Ŷ(h) é Ŷ(h)P+o(1)

=Oq−
.(x − y), Y(x) é Y(y)P+o(1), t Q+.. L

8.3. Convergence of Qr
t(x, y)

Lemma 8.4. lim t Q . OQ r
t (x, y), Y(x) é Y(y))P=0 for any Y ¥ D0.

Proof.

Step 1. We develop the method, ref. 1, p. 140. Let us define (as
in (7.4))

F(xŒ, t) := C
x ¥ Z d

GT
t (x − xŒ) Y(x).

Then using (8.4) we have,

OQ r
t (x, y), Y(x) é Y(y)P= C

xŒ ¥ Z d
C

yŒ ¥ Z d
Q r(xŒ, yŒ) F(xŒ, t) F(yŒ, t)

= C
zŒ ¥ Z d

Ft(zŒ), (8.27)
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where

Ft(zŒ) := C
yŒ ¥ Z d

Q r(yŒ+zŒ, yŒ) F(yŒ+zŒ, t) F(yŒ, t). (8.28)

The estimates (5.3), (5.5), and definition (8.3) imply the same estimate
for Q r(x, y): |Q r(x, y)| [ Ce0j1/2(|x − y|). Hence, the Cauchy–Schwartz
inequality and (7.6) imply

|Ft(zŒ)| [ C
yŒ ¥ Z d

||Q r(yŒ+zŒ, yŒ)|| |F(yŒ+zŒ, t)| |F(yŒ, t)|

[ Cj1/2(|zŒ|) C
yŒ ¥ Z d

|F(yŒ+zŒ, t)| |F(yŒ, t)|

[ C1j1/2(|zŒ|) ||Y||2
V, (8.29)

where ||Y||2
V is defined by (7.2). Hence, (2.14) and condition E6 imply

C
zŒ ¥ Z d

|Ft(zŒ)| [ C(Y) C
zŒ ¥ Z d

j1/2(|zŒ|) [ C1 < ., (8.30)

and the series (8.27) converges uniformly in t. Therefore, it suffices to prove
that

lim
t Q .

Ft(zŒ)=0 for each zŒ ¥ Zd. (8.31)

Step 2. Let us prove (8.31). Condition S1 and (8.3) imply that
Q r(yŒ+zŒ, yŒ)=qr(z̄Œ, y −

d+z −

d, y −

d), where

lim
yŒd Q± .

q r(z̄Œ, y −

d+z −

d, y −

d)=0, for (z̄Œ, z −

d) ¥ Zd. (8.32)

Hence, -e > 0 there exists N ¥ N so large that |q r(z̄Œ, y −

d+z −

d, y −

d)| < e for
|y −

d | > N. Respectively, decompose the series (8.28) into two series: Ft(zŒ)=
;ȳŒ ¥ Z d − 1 ; |yŒd| > N · · · +;ȳŒ ¥ Z d − 1 ; |yŒd| < N · · · . By (7.6) and condition E6, the
first series is estimated by

: C
ȳŒ ¥ Z d − 1

C
|yŒd| > N

q r(z̄Œ, y −

d+z −

d, y −

d) F(yŒ+zŒ, t) F(yŒ, t) :

[ e C
yŒ ¥ Z d

|F(yŒ, t)|2 [ e C(Y). (8.33)

Note that q r(z̄Œ, y −

d+z −

d, y −

d) does not depend on ȳŒ. Then we can rewrite
the second series by the Parseval identity as
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C
|yŒd| < N

q r(z̄Œ, y −

d+z −

d, y −

d) C
ȳŒ ¥ Z d − 1

F(yŒ+zŒ, t) F(yŒ, t)

=(2p)−2d+2 C
|yŒd| < N

q r(z̄Œ, y −

d+z −

d, y −

d)

× F
T d − 1

FȳŒ Q h̄[F(yŒ+zŒ, t)] FȳŒ Q h̄[F(yŒ, t)] dh̄. (8.34)

It remains to prove that the integral in the r.h.s. of (8.34) tends to zero as
t Q . for fixed zŒ ¥ Zd and |y −

d | < N. First, let us note that for the integrand
in (8.34) the following uniform bound holds,

|FȳŒ Q h̄[F(yŒ+zŒ, t)] FȳŒ Q h̄[F(yŒ, t)]|

[ G(h̄), t \ 0, where G(h̄) ¥ L1(Td − 1). (8.35)

Indeed, rewrite the function FȳŒ Q h̄[F(yŒ, t)] in the form

FȳŒ Q h̄[F(yŒ, t)]=(2p)−1 F
T1

e−ihd yŒd F̂(h, t) dhd

=(2p)−1 F
T1

e−ihd yŒd G1 g
t (h) Ŷ(h) dhd. (8.36)

Therefore,

|FȳŒ Q h̄[F(yŒ+zŒ, t)]FȳŒ Q h̄[F(yŒ, t)]|

[ C 1F
T1

||G1 g
t (h)|| |Ŷ(h)| dhd

22

[ C1 F
T1

||G1 g
t (h)||2 |Ŷ(h)|2 dhd

[ C2 F
T1

||(1+||V̂−1(h)||)|| |Ŷ(h)|2 dhd :=G(h̄) (8.37)

and (8.35) follows from condition E6. Therefore, it suffices to prove that
the integrand in the r.h.s. of (8.34) tends to zero as t Q . for a.a. fixed
h̄ ¥ Td − 1. We use the finite partition of unity (8.7) (remember that Y ¥ D0)
and split the function FȳŒ Q h̄[F(yŒ, t)] into the sum of the integrals:

FȳŒ Q h̄[F(yŒ, t)]=C
m

C
± , k ¥ n̄

F
T1

gm(h) e−ihd yŒde ± iwk(h) ta±
k (h) Ŷ(h) dhd, Y ¥ D0.

(8.38)

The eigenvalues wk(h) and the matrices a±
k (h) are real-analytic functions

inside the supp gm for every m. From Definition 7.2(i) and conditions E4,
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E6 it follows that mes {hd ¥ T1 : Nhd
wk(h)=0}=0 for a.a. fixed h̄ ¥ Td − 1.

Hence, the integrals in (8.38) vanish as t Q . by the Lebesgue–Riemann
theorem. L

Finally, Lemmas 8.1, 8.2, and 8.4 imply the convergence (7.1) for
Y ¥ D0. Then (7.1) follows for any Y ¥ D by Lemma 7.5 (see Section 7.1).
Proposition 7.1 is proved. L

9. BERNSTEIN’S ARGUMENT

9.1. Oscillatory Integrals and Stationary Phase Method

To prove (1.12) we evaluate OY( · , t), YP by (7.4), where

F(x, t) :=F−1
h Q x[G1 g

t (h) Ŷ(h)]=(2p)−d F
T d

e−ihxG1 g
t (h) Ŷ(h) dh, x ¥ Zd.

(9.1)

Similarly to (8.38) or (8.8) using the partition of unity (8.7) we get

F(x, t)=C
m

C
± , k ¥ n̄

F
T d

gm(h) e−i(hx ± wkt)a±
k (h) Ŷ(h) dh, Y ¥ D0, (9.2)

where wk(h) and a±
k (h) are real-analytic functions inside the supp gm for

every m.
Note that F(t) :=F( · , t) is the solution to the ‘‘conjugate’’ equation

(cf (1.3), (1.4))

Ḟ(t)=AŒF(t), t ¥ R; AŒ=R0 −V

1 0
S , (9.3)

which is obvious in the Fourier transform. Therefore, the solutions Y(t)=
(Y0(t), Y1(t)) and F(t)=(F0(t), F1(t)) to the equations (1.3) and (9.3)
coincide up to order of the components. Hence, F(x, t) has corresponding
dispersive properties.

We will deduce (1.12) by analyzing the propagation of the solution
F(x, t) to Eq. (9.3), in different directions x=vt with v ¥ Rd. For this
purpose, we apply the stationary phase method to the oscillatory integral
(9.2) along the rays x=vt, t > 0. Then the phase becomes (hv ± wk(h)) t,
and its stationary points are the solutions to the equations v=+ Nwk(h).

Recall that we can restrict ourselves by Y ¥ D0, hence Ŷ(h)=0 in
the points h ¥ Td with degenerate Hessian Dk(h) (see E4). Therefore, the
stationary phase method leads to the following two different types of the
asymptotic behavior of F(vt, t) as t Q .:
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(I) For the velocity v inside the light cone: v=± Nwk(h), h ¥ Td 0C.
Then

F(vt, t)=O(t−d/2). (9.4)

(II) For the velocity v outside the light cone: v ] ± Nwk(h),
h ¥ Td 0C, k ¥ n̄. Then

F(vt, t)=O(t−p), -p > 0. (9.5)

The asymptotics of the types (I) and (II) allow us to incorporate the
Bernstein-type approach developed in ref. 1 for case d=1 and in refs. 7
and 8 for continuous Klein–Gordon and wave equations for d \ 1. We
formalize (9.4), (9.5) as follows.

Lemma 9.1. For any fixed Y ¥ D0 the following bounds hold:

(i)

sup
x ¥ Z d

|F(x, t)| [ Ct−d/2. (9.6)

(ii) For any p > 0 there exist Cp, c > 0 s.t.

|F(x, t)| [ Cp(1+|x|+|t|)−p, |x| \ ct. (9.7)

Proof. Consider F(x, t) along each ray x=vt with arbitrary v ¥ Rd.
Substituting to (9.2), we get

F(vt, t)=C
m

C
± , k ¥ n̄

F
T d

gm(h) e−i(hv ± wk(h)) ta±
k (h) Ŷ(h) dh, Ŷ ¥ D0. (9.8)

This is a sum of oscillatory integrals with the phase functions f±
k (h)=

hv ± wk(h) and the amplitudes a±
k (h) which are real-analytic functions of

the h inside the supp gm. Since wk(h) is real-analytic, each function f±
k has

no more than a finite number of stationary points h ¥ supp gm, solutions to
the equation v=+ Nwk(h). The stationary points are non-degenerate for
h ¥ supp gm by (8.7), Definition 7.2 and E4 since

det 1 “
2f±

k

“hi “hj

2=± Dk(h) ] 0, h ¥ supp gm. (9.9)

At last, Ŷ(h) is smooth since Y ¥ D. Therefore, F(vt, t)=O(t−d/2) accord-
ing to the standard stationary phase method. (13, 22) This implies the bounds
(9.6) in each cone |x| [ ct with any finite c.
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Further, denote by v̄ :=maxm max k ¥ n̄ max h ¥ supp gm
|Nwk(h)|. Then for

|v| > v̄ the stationary points do not exist on the supp Ŷ. Hence, the integra-
tion by parts as in ref. 22 yields F(vt, t)=O(t−p) for any p > 0. On the
other hand, the integration by parts in (9.2) implies similar bound
F(x, t)=O((t/|x|) l) for any l > 0. Therefore, (9.7) follows with any c > v̄.
Now the bounds (9.6) follow everywhere. L

9.2. ‘‘Rooms-Corridors’’ Partition

The remaining constructions in the proof of (1.12) are similar to refs. 7
and 10. However, the proofs are not identical since here we consider non
translation-invariant case.

Let us introduce a ‘‘room-corridor’’ partition of the ball {x ¥ Zd :
|x| [ ct}, with c from (9.7). For t > 0 we choose Dt and rt ¥ N. Asymptotic
relations between t, Dt, and rt are specified below. Let us set ht=Dt+rt

and

a j=jht, b j=a j+Dt, j ¥ Z, Nt=[(ct)/ht]. (9.10)

We call the slabs R j
t={x ¥ Zd : |x| [ Nt ht, a j [ xd < b j} the ‘‘rooms,’’ C j

t=
{x ¥ Zd : |x| [ Nt ht, b j [ xd < a j+1} the ‘‘corridors’’ and Lt={x ¥ Zd : |x|
> Nt ht} the ‘‘tails.’’ Here x=(x1,..., xd), Dt is the width of a room, and rt

of a corridor. Let us denote by q j
t the indicator of the room R j

t , t j
t that of

the corridor C j
t , and gt that of the tail Lt. Then

C
t

[q j
t(x)+t j

t(x)]+gt(x)=1, x ¥ Zd, (9.11)

where the sum ;t stands for ;Nt − 1
j=−Nt

. Hence, we get the following
Bernstein’s type representation:

OY0, F( · , t)P=C
t

[OY0, q j
tF( · , t)P+OY0, t j

tF( · , t)P]+OY0, gtF( · , t)P.
(9.12)

Let us define the random variables r j
t , c j

t , lt by

r j
t=OY0, q j

tF( · , t)P, c j
t=OY0, t j

tF( · , t)P, lt=OY0, gtF( · , t)P.
(9.13)

Then (9.12) becomes

OY0, F( · , t)P=C
t

(r j
t+c j

t)+lt. (9.14)
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Lemma 9.2. Let S0–S3 hold and Y ¥ D0. The following bounds
hold for t > 1:

E |r j
t |

2 [ C(Y) Dt/t, -j, (9.15)

E |c j
t |

2 [ C(Y) rt/t, -j, (9.16)

E |lt |2 [ Cp(Y) t−p, -p > 0. (9.17)

Proof. (9.17) follows from (9.7) and Proposition 5.2(i). We discuss
(9.15) only, (9.16) is done in a similar way. Let us express E |r j

t |
2 in the

correlation matrices. Definition (9.13) implies

E |r j
t |

2=OQ0(x, y), q j
t(x) F(x, t) é q j

t(y) F(y, t)P. (9.18)

According to (9.6), Eq. (9.18) implies that

E |r j
t |

2 [ Ct−d C
x, y

q j
t(x) ||Q0(x, y)||

=Ct−d C
x

q j
t(x) C

y ¥ Z d
||Q0(x, y)|| [ CDt/t, (9.19)

where ||Q0(x, y)|| stands for the norm of a matrix (Q ij
0 (x, y)). Therefore,

(9.19) follows by Proposition 5.2(i). L

Now we prove the convergence (1.12). As was said, we use a version
of the Central Limit Theorem developed by Ibragimov and Linnik. If
Q.(Y, Y)=0, the convergence (1.12) is obvious. In fact, then,

|E exp{iOY0, F( · , t)P} − m̂.(Y)|

=E |exp{iOY0, F( · , t)P} − 1| [ E |OY0, F( · , t)P|

[ (E |OY0, F( · , t)P|2)1/2=(OQ0(x, y), F(x, t) é F(y, t)P)1/2

=(Qt(Y, Y))1/2, (9.20)

where Qt(Y, Y) Q Q.(Y, Y)=0, t Q .. Therefore, (1.12) follows from
(7.1). Thus, we may assume that for a given Y ¥ D0,

Q.(Y, Y) ] 0. (9.21)

Let us choose 0 < d < 1 and

rt ’ t1 − d, Dt ’
t

log t
, t Q .. (9.22)
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Lemma 9.3. The following limit holds true:

Nt
1j(rt)+1rt

t
21/22+N2

t
1j1/2(rt)+

rt

t
2
Q 0, t Q .. (9.23)

Proof. Function j(r) is non-increasing, hence by (2.14),

rdj1/2(r)=d F
r

0
sd − 1j1/2(r) ds [ d F

r

0
sd − 1j1/2(s) ds [ Cj̄ < .. (9.24)

Furthermore, (9.22) implies that ht=rt+Dt ’ t
log t , t Q .. Therefore,

Nt ’ t
ht

’ log t. Then (9.23) follows by (9.24) and (9.22). L

By the triangle inequality,

|E exp{iOY0, F( · , t)P} − m̂.(Y)|

[ :E exp{iOY0, F( · , t)P} − E exp 3 i C
t

r j
t
4:

+:exp 3− 1
2 C

t
E |r j

t |
24− exp{− 1

2 Q.(Y, Y)} :

+:E exp 3 i C
t

r j
t
4− exp 3− 1

2 C
t

E |r j
t |

24:

— I1+I2+I3. (9.25)

We are going to show that all summands I1, I2, I3 tend to zero as t Q ..

Step (i). Equation (9.14) implies

I1=:E exp 3 i C
t

r j
t
4 1exp 3 i C

t
c j

t+ilt
4− 12:

[ C
t

E |c j
t |+E |lt | [ C

t
(E |c j

t |
2)1/2+(E |lt |2)1/2. (9.26)

From (9.26), (9.16), (9.17), and (9.23) we obtain that

I1 [ Cpt−p+CNt(rt/t)1/2
Q 0, t Q .. (9.27)
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Step (ii). By the triangle inequality,

I2 [ 1
2
:C

t
E |r j

t |
2 −Q.(Y, Y) :

[ 1
2 |Qt(Y, Y) −Q.(Y, Y)|

+1
2
:E 1C

t
r j

t
22

− C
t

E |r j
t |

2 :+1
2
:E 1C

t
r j

t
22

−Qt(Y, Y) :

— I21+I22+I23, (9.28)

where Qt is a quadratic form with the matrix kernel (Q ij
t (x, y)). (7.1)

implies that I21 Q 0. As to I22, we first have that

I22 [ C
j < l

|Er j
tr

l
t |. (9.29)

The next lemma is a corollary of Lemma 17.2.3 in ref. 17.

Lemma 9.4. Let A, B be the subsets of Zd with the distance
dist(A, B) \ r > 0, and t, g be random variables on the probability space
(Ha, B(Ha), m0). Moreover, let t be measurable with respect to the
s-algebra s(A), g with respect to the s-algebra s(B). Then

(i) |Etg − EtEg| [ Cabj1/2(r) if (E |t|2)1/2 [ a and (E |g|2)1/2 [ b.

(ii) |Etg − EtEg| [ Cabj(r) if |t| [ a and |g| [ b a.e.

We apply Lemma 9.4 to deduce that I22 Q 0 as t Q .. Note that
r j

t=OY0, q j
tF( · , t)P is measurable with respect to the s-algebra s(R j

t). The
distance between the different rooms R j

t is greater or equal to rt according
to (9.10). Then (9.29) and S1, S3 imply, together with Lemma 9.4(i) and
(9.15), that

I22 [ CN2
t j1/2(rt), (9.30)

which vanishes as t Q . because of (9.23). Finally, it remains to check that
I23 Q 0, t Q .. We have

Qt(Y, Y)=EOY0, F( · , t)P2=E 1C
t

(r j
t+c j

t)+lt
22

,
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according to (9.14). Therefore, by the Cauchy–Schwartz inequality,

I23 [ :E 1C
t

r j
t
22

− E 1C
t

r j
t+C

t
c j

t+lt
22 :

[ CNt C
t

E |c j
t |

2+C1
1E 1C

t
r j

t
2221/2 1Nt C

t
E |c j

t |
2+E |lt |221/2

+CE |lt |2.

(9.31)

Then (9.15), (9.29), and (9.30) imply

E 1C
t

r j
t
22

[ C
t

E |r j
t |

2+2 C
j < l

|Er j
tr

l
t | [ CNtDt/t+C1Ntj

1/2(rt) [ C2 < ..

Now (9.16), (9.17), (9.31), and (9.23) yield

I23 [ C1N2
t rt/t+C2Nt(rt/t)1/2+C3t−p

Q 0, t Q .. (9.32)

So, all terms I21, I22, I23 in (9.28) tend to zero. Then (9.28) implies that

I2 [ 1
2
:C

t
E |r j

t |
2 −Q.(Y, Y) :Q 0, t Q .. (9.33)

Step (iii). It remains to verify that

I3=:E exp 3 i C
t

r j
t
4− exp 3− 1

2 C
t

E |r j
t |

24:
Q 0, t Q ..

Lemma 9.4(ii) yields:

:E exp 3 i C
t

r j
t
4− D

Nt − 1

− Nt

E exp{ir j
t} :

[ :E exp{ir−Nt
t } exp 3 i C

Nt − 1

− Nt+1
r j

t
4− E exp{ir−Nt

t } E exp 3 i C
Nt − 1

− Nt+1
r j

t
4:

+:E exp{ir−Nt
t } E exp 3 i C

Nt − 1

− Nt+1
r j

t
4− D

Nt − 1

− Nt

E exp{ir j
t} :

[ Cj(rt)+:E exp 3 i C
Nt − 1

− Nt+1
r j

t
4− D

Nt − 1

− Nt+1
E exp{ir j

t} : .
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We then apply Lemma 9.4(ii) recursively and get, according to Lemma 9.3,

:E exp 3 i C
t

r j
t
4− D

Nt − 1

− Nt

E exp{ir j
t} : [ CNtj(rt) Q 0, t Q ..

It remains to check that

: D
Nt − 1

− Nt

E exp{ir j
t} − exp 3− 1

2 C
t

E |r j
t |

24:
Q 0, t Q ..

According to the standard statement of the Central Limit Theorem (see,
e.g., ref. 21, Theorem 4.7), it suffices to verify the Lindeberg condition:
-d > 0,

1
st

C
t

E
d `st

|r j
t |

2
Q 0, t Q ..

Here st — ;t E |r j
t |

2, and Ee f — E(Xe f ), where Xa is the indicator of the
event |f| > e2. Note that (9.33) and (9.21) imply that st Q Q.(Y, Y) ] 0,
t Q .. Hence it remains to verify that

C
t

Ee |r j
t |

2
Q 0, t Q ., for any e > 0. (9.34)

We check Eq. (9.34) in Section 10. This will complete the proof of Propo-
sition 2.11. L

10. THE LINDEBERG CONDITION

The proof of (9.34) can be reduced to the case when for some L \ 0 we
have that

|u0(x)|+|v0(x)| [ L < ., x ¥ Zd. (10.1)

Then the proof of (9.34) is reduced to the convergence

C
t

E |r j
t |

4
Q 0, t Q ., (10.2)

by using Chebyshev’s inequality. The general case can be covered by stan-
dard cutoff arguments by taking into account that the bound (9.15) for
E |r j

t |
2 depends only on e0 and j. The last fact is obvious from (9.19) and

(5.4). We deduce (10.2) from
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Theorem 10.1. Let the conditions of Theorem A hold and assume
that (10.1) is fulfilled. Then for any Y ¥ D0 the following bounds hold:

E |r j
t |

4 [ C(Y) L4D2
t /t2, t > 1. (10.3)

Proof.

Step 1. Given four points x1, x2, x3, x4 ¥ Zd, set: M (4)
0 (x1,..., x4)=

E(Y0(x1) é · · · é Y0(x4)). Then, similarly to (9.18), Eqs. (10.1) and (9.13)
imply

E |r j
t |

4=Oq j
t(x1) · · · q j

t(x4) M(4)
0 (x1,..., x4), F(x1, t) é · · · é F(x4, t)P.

(10.4)

Let us analyze the domain of the (Zd)4 in the r.h.s. of (10.4). We partition
(Zd)4 into three parts, W2, W3, and W4:

(Zd)4=0
4

i=2
Wi, Wi={x̄=(x1, x2, x3, x4) ¥ (Zd)4 : |x1 − x i|= max

p=2, 3, 4
|x1 − xp|}.

(10.5)

Furthermore, given x̄=(x1, x2, x3, x4) ¥ Wi, divide Zd into three parts Sj,
j=1, 2, 3: Zd=S1 2 S2 2 S3, by two hyperplanes orthogonal to the
segment [x1, x i] and partitioning it into three equal segments, where
x1 ¥ S1 and x i ¥ S3. Denote by xp, xq the two remaining points with
p, q ] 1, i. Set: Ai={x̄ ¥ Wi : xp ¥ S1, xq ¥ S3}, Bi={x̄ ¥ Wi : xp, xq ¨ S1},
and Ci={x̄ ¥ Wi : xp, xq ¨ S3}, i=2, 3, 4. Then Wi=Ai 2 Bi 2 Ci. Define
the function m (4)

0 (x̄), x̄ ¥ (Zd)4, in the following way:

m (4)
0 (x̄)|Wi

=˛M(4)
0 (x̄) − Q0(x1, xp) é Q0(x i, xq), x̄ ¥ Ai,

M(4)
0 (x̄), x̄ ¥ Bi 2 Ci.

(10.6)

This determines m (4)
0 (x̄) correctly for all quadruples x̄. Note that

Oq j
t(x1) · · · q j

t(x4) Q0(x1, xp) é Q0(x i, xq), F(x1, t) é · · · é F(x4, t)P

=Oq j
t(x1) q j

t(xp) Q0(x1, xp), F(x1, t) é F(xp, t)P

×Oq j
t(x i) q j

t(xq) Q0(x i, xq), F(x i, t) é F(xq, t)P.

Each factor here is bounded by C(Y) Dt/t. Similarly to (9.15), this can be
deduced from an expression of type (9.18) for the factors. Therefore, the
proof of (10.3) reduces to the proof of the bound

It :=|Oq j
t(x1) · · · q j

t(x4) m (4)
0 (x1,..., x4), F(x1, t) é · · · é F(x4, t)P|

[ C(Y) L4D2
t /t2, t > 1. (10.7)
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Step 2. Similarly to (9.19), the estimate (9.6) implies,

It [ Ct−2d C
x̄

q j
t(x1) · · · q j

t(x4) |m (4)
0 (x1,..., x4)|. (10.8)

We estimate m (4)
0 using Lemma 9.4(ii).

Lemma 10.2. For each i=2, 3, 4 and all x̄ ¥ Wi the following
bound holds:

|m (4)
0 (x1,..., x4)| [ CL4j(|x1 − x i|/3). (10.9)

Proof. For x̄ ¥ Ai we apply Lemma 9.4(ii) to R2n é R2n-valued
random variables t=Y0(x1) é Y0(xp) and g=Y0(x i) é Y0(xq). Then (10.1)
implies the bound for all x̄ ¥ Ai,

|m (4)
0 (x̄)| [ CL4j(|x1 − x i|/3). (10.10)

For x̄ ¥ Bi, we apply Lemma 9.4(ii) to t=Y0(x1) and g=Y0(xp) é Y0(xq)
é Y0(x i). Then S0 implies a similar bound for all x̄ ¥ Bi,

|m (4)
0 (x̄)|=|M(4)

0 (x̄) − EY0(x1) é E(Y0(xp) é Y0(xq) é Y0(x i))|

[ CL4j(|x1 − x i|/3), (10.11)

and the same for all x̄ ¥ Ci. L

Step 3. It remains to prove the following bounds for each
i=2, 3, 4:

Vi(t) :=C
x̄

q j
t(x1) · · · q j

t(x4) Xi(x̄) j(|x1 − x i|/3) [ CD2
t t2d − 2, (10.12)

where Xi is an indicator of the set Wi. In fact, this sum does not depend
on i, hence set i=2 in the summand:

Vi(t) [ C C
x1, x 2

q j
t(x1) q j

t(x2) j(|x1 − x2|/3) C
x 3

q j
t(x3) C

x 4

q j
t(x4) X2(x̄).

(10.13)

Now a key observation is that the inner sum in x4 is O(|x1 − x2|d) as
X2(x̄)=0 for |x4 − x1| > |x1 − x2|. This implies

Vi(t) [ C C
x1

q j
t(x1) C

x 2

q j
t(x2) j(|x1 − x2|/3) |x1 − x2|d C

x 3

q j
t(x3). (10.14)
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Remember that q j
t(x) is an indicator of the room R j

t={x ¥ Zd : |x| [ Nt ht,
a j [ xd < b j}, where Nt=[ct/ht]. The inner sum in x2 is bounded as

F
|x 2| [ ct

j(|x1 − x2|/3) |x1 − x2|d dx2

[ C(d) F
2ct

0
r2d − 1j(r/3) dr

[ C1(d) sup
r ¥ [0, 2ct]

rdj1/2(r/3) F
2ct

0
rd − 1j1/2(r/3) dr, (10.15)

where the ‘‘sup’’ and the last integral are bounded by (9.24) and (2.14),
respectively. Therefore, (10.12) follows from (10.14). This completes the
proof of Theorem 10.1. L

APPENDIX A. DYNAMICS AND COVARIANCE IN FOURIER SPACE

Proof of Proposition 2.4. Applying Fourier transform to (1.3) we
obtain

Ẏ̂(t)=Â(h) Ŷ(t), t ¥ R, Ŷ(0)=Ŷ0. (A.1)

Here we denote

Â(h)=R 0 1
− V̂(h) 0

S , h ¥ Td. (A.2)

Note that Ŷ( · , t) ¥ DŒ(Td) for t ¥ R. On the other hand, V̂(h) is a smooth
function by E1. Therefore, the solution Ŷ(h, t) of (A.1) exists, is unique
and admits the representation Ŷ(h, t)=exp(Â(h) t) Ŷ0(h) which becomes
the convolution

Y(x, t)= C
xŒ ¥ Z d

Gt(x − xŒ) Y0(xŒ) (A.3)

in the coordinate space, where the Green function Gt(z) admits the Fourier
representation

Gt(z) :=F−1
h Q z[exp(Â(h) t)]=(2p)−d F

T d
e−izh exp(Â(h) t) dh. (A.4)

Hence, by the partial integration, Gt(z) ’ |z|−p as |z| Q . for any p > 0 and
bounded |t| since Â(h) is the smooth function of h ¥ Td. Therefore, the
convolution representation (A.3) implies Y(t) ¥ Ha. L
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Covariance in Fourier Space. Note that G1t(h) has a form

G1t(h)=R cos Wt sin Wt W−1

− sin Wt W cos Wt
S , (A.5)

where W=W(h) is the Hermitian matrix defined by (2.2). Let Ĉ(h) be
defined by (2.21) and I be the identity matrix. Then

G1t(h)=cos Wt I+sin Wt Ĉ(h). (A.6)

Denote by Q(x, y) :=E(Y0(x) é Y0(y)), and Qt(x, y) :=E(Y(x, t) é
Y(y, t)). Hence, applying Fourier transform to Qt(x, y) we get

Q̂t(h, hŒ) :=Fx Q h, y Q− hŒQt(x, y)=G1t(h) Q̂(h, hŒ) G1 T
t (−hŒ),

where Q̂(h, hŒ) :=Fx Q h, y Q− hŒQ(x, y). Note that due to condition E2
WT(−hŒ)=Wg(hŒ)=W(hŒ) and then G1 T

t (−hŒ)=G1 g
t (hŒ), where

G1 g
t (h) :=cos Wt I+sin Wt Ĉg(h). (A.7)

Here Ĉg is Hermitian adjoint matrix to Ĉ as in (2.21). Then

Q̂t(h, hŒ)=cos W(h) t Q̂(h, hŒ) cos W(hŒ) t

+sin W(h) t Ĉ(h) Q̂(h, hŒ) Ĉg(hŒ) sin W(hŒ) t

+cos W(h) t Q̂(h, hŒ) Ĉg(hŒ) sin W(hŒ) t

+sin W(h) t Ĉ(h) Q̂(h, hŒ) cos W(hŒ) t. (A.8)

Now, for simplicity of calculations, we will assume that the set of the
‘‘crossing’’ points hg is empty, i.e., wk(h) ] wl(h), -k, l ¥ n̄, and the func-
tions wk(h) and B(h) are real-analytic. For example, this is the case of the
simple elastic lattice (3.1). (Otherwise, we need a partition of unity (8.7)).
Consider the first term in the r.h.s. of (A.8). We rewrite it using (2.3) in the
form

cos W(h) tQ̂(h, hŒ) cos W(hŒ) t

=B(h)(cos wk(h) t A(h, hŒ)kl cos wl(hŒ) t)k, l ¥ n̄ Bg(hŒ)

=B(h) 1
2 ((cos(wk(h) − wl(hŒ)) t

+cos(wk(h)+wl(hŒ)) t) A(h, hŒ)kl)k, l ¥ n̄ Bg(hŒ), (A.9)
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where A(h, hŒ) :=Bg(h) Q̂(h, hŒ) B(hŒ). Similarly, we can rewrite the
remaining three terms in the r.h.s. of (A.8). Finally,

Q̂t(h, hŒ)=G1t(h) Q̂(h, hŒ) G1 g
t (hŒ)=B(h) Rt(h, hŒ) Bg(hŒ), (A.10)

where by Rt(h, hŒ) we denote the 2n × 2n matrix with the entries

Rt(h, hŒ)kl :=1
2 C

±
{cos(wk(h) ± wl(hŒ)) t

× [Bg(h)(Q̂(h, hŒ) + Ĉ(h) Q̂(h, hŒ) Ĉg(hŒ)) B(hŒ)]kl

+sin(wk(h) ± wl(hŒ)) t

× [Bg(h)(Ĉ(h) Q̂(h, hŒ) ± Q̂(h, hŒ) Ĉg(hŒ)) B(hŒ)]kl}.
(A.11)

In the translation-invariant case Q(x, y)=q(x − y), Q̂(h, hŒ)=d(h − hŒ)
× q̂(h) and we get

Q̂t(h, hŒ)=d(h − hŒ) B(h) Rt(h) Bg(h), (A.12)

where by Rt(h) we denote the 2n × 2n matrix with the entries

Rt(h)kl=
1
2 C

±
{cos(wk(h) ± wl(h)) t[Bg(h)(q̂(h) + Ĉ(h) q̂(h) Ĉg(h)) B(h)]kl

+sin(wk(h) ± wl(h)) t[Bg(h)(Ĉ(h) q̂(h) ± q̂(h) Ĉg(h)) B(h)]kl}.
(A.13)

Let us denote by p(h) :=Bg(h) q̂(h) B(h). Then by (2.3) and (2.21) we
obtain

Rt(h)kl=
1
2 C

±

˛cos(wk(h) + wl(h)) t Rp00
kl ± w−1

k p11
kl w−1

l p01
kl + w−1

k p10
kl wl

p10
kl + wk p01

kl w−1
l p11

kl ± wk p00
kl wl

S

+sin(wk(h) ± wl(h)) t R w−1
k p10

kl ± p01
kl w−1

l w−1
k p11

kl + p00
kl wl

− wk p00
kl ± p11

kl w−1
l − wk p01

kl + p10
kl wl

Sˇ .

(A.14)

We enumerate the eigenvalues wk(h) as in (2.5). Then for k, l ¥ (rs − 1, rs],
s=1,..., s+1, we have

Rt(h)kl=
1
2 [Bg(h)(q̂(h)+Ĉ(h) q̂(h) Ĉg(h)) B(h)]kl

+1
2 cos 2wk(h) t[Bg(h)(q̂(h) − Ĉ(h) q̂(h) Ĉg(h)) B(h)]kl

+1
2 sin 2wk(h) t[Bg(h)(Ĉ(h) q̂(h)+q̂(h) Ĉg(h)) B(h)]kl. (A.15)
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